Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6794, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514663

RESUMO

Mycobacterial pathogens present a significant challenge to disease control efforts globally due to their inherent resistance to multiple antibiotics. The rise of drug-resistant strains of Mycobacterium tuberculosis has prompted an urgent need for innovative therapeutic solutions. One promising way to discover new tuberculosis drugs is by utilizing natural products from the vast biochemical space. Multidisciplinary methods can used to harness the bioactivity of these natural products. This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from bacteria isolated from gold mine tailings in South Africa. Bacterial strains were identified using 16S rRNA sequencing. The crude extracts obtained from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular networking were used to identify the functional constituents present in extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) was used to filter compounds that were strong binders to Mycobacterium tuberculosis Pks13 and PknG. The ligands returned from the VSW were subjected to optimization using density functional theory (DFT) at M06-2X/6-311++ (d,p) level of theory and basis set implemented in Gaussian16 Rev.C01. The optimized ligands were re-docked against Mycobacterium tuberculosis Pks13 and PknG. Molecular dynamics simulation and molecular mechanics generalized born surface area were used to evaluate the stability of the protein-ligand complexes formed by the identified hits. The hit that showed promising binding characteristics was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three bacterial isolates showed significant activity against the two strains of Mycobacterium, while only two, Bacillus subtilis and Bacillus licheniformis, exhibited activity against both Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. The tentatively identified compounds from the bacterial crude extracts belonged to various classes of natural compounds associated with antimicrobial activity. Two compounds, cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A, showed strong binding against PknG and Pks13, with pre-MD MM-GBSA values of - 42.8 kcal/mol and - 47.6 kcal/mol, respectively. The DFT-optimized compounds exhibited the same docking scores as the ligands optimized using the OPSL-4 force field. After modifying vazabitide A, its affinity to the Pks13 binding site increased to - 85.8 kcal/mol, as revealed by the post-MD MM-GBSA analysis. This study highlights the potential of bacteria isolates from gold mine tailings as a source of new scaffolds for designing and optimizing anti-Mycobacterium agents. These agents synthesized in-silico can be further tested in-vitro to evaluate their efficacy.


Assuntos
Produtos Biológicos , Mycobacteriaceae , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , RNA Ribossômico 16S , Antibacterianos/farmacologia , Mycobacterium smegmatis/genética , Produtos Biológicos/farmacologia , Misturas Complexas , Antituberculosos/farmacologia , Antituberculosos/química
2.
Metabolites ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422295

RESUMO

Acquired immunodeficiency syndrome (AIDS), one of the deadliest global diseases, is caused by the Human Immunodeficiency Virus (HIV). To date, there are no known conventional drugs that can cure HIV/AIDS, and this has prompted continuous scientific efforts in the search for novel and potent anti-HIV therapies. In this study, molecular dynamics simulation (MDS) and computational techniques were employed to investigate the inhibitory potential of bioactive compounds from selected South African indigenous plants against HIV-1 subtype C protease (HIVpro). Of the eight compounds (CMG, MA, UA, CA, BA, UAA, OAA and OA) evaluated, only six (CMG (-9.9 kcal/mol), MA (-9.3 kcal/mol), CA (-9.0 kcal/mol), BA (-8.3 kcal/mol), UAA (-8.5 kcal/mol), and OA (-8.6 kcal/mol)) showed favourable activities against HIVpro and binding landscapes like the reference FDA-approved drugs, Lopinavir (LPV) and Darunavir (DRV), with CMG and MA having the highest binding affinities. Using the structural analysis (root-mean-square deviation (RMSD), fluctuation (RMSF), and radius of gyration (RoG) of the bound complexes with HIVpro after 350 ns, structural evidence was observed, indicating that the six compounds are potential lead candidates for inhibiting HIVpro. This finding was further corroborated by the structural analysis of the enzyme-ligand complexe systems, where structural mechanisms of stability, flexibility, and compactness of the study metabolites were established following binding with HIVpro. Furthermore, the ligand interaction plots revealed that the metabolites interacted hydrophobically with the active site amino residues, with identification of other key residues implicated in HIVpro inhibition for drug design. Overall, this is the first computational report on the anti-HIV-1 activities of CMG and MA, with efforts on their in vitro and in vivo evaluations underway. Judging by the binding affinity, the degree of stability, and compactness of the lead metabolites (CMG, MA, CA, BA, OA, and UAA), they could be concomitantly explored with conventional HIVpro inhibitors in enhancing their therapeutic activities against the HIV-1 serotype.

3.
J Mol Model ; 27(2): 37, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432382

RESUMO

Segmented polyurethanes show extraordinary physicochemical properties, mainly owing to the nature and the chemistry of the hard segment domains. There are yet many inexplicable physiochemical properties of MDI-BDO-based hard polyurethane segments such as the geometry, cis-trans isomerism, electronic structure, chemical reactivity, the inter-hard-segment interactions, and the photo-response. In the present study, it was attempted to develop and validate a model system that would facilitate further research on the structural and chemical properties of the MDI-BDO hard segments. It was found that the trans isomer of urethane bond is more stable than the cis isomer, and it is argued here that thermal transformation from trans to cis not possible due to the high rotational energy barrier. The differences between the calculated IR spectra of the cis and trans isomers are proposed as a powerful differentiation tool. The calculated Fukui indices show that cis and trans isomers are different in their chemical reactivity. The findings of the present study suggest intermolecular and intramolecular pi-stacking and highly plausible two significant types of hydrogen bond types between hard segments. In the present study, a model system for MDI-BDO hard segment was developed and successfully validated via computational experiments. Further calculations done with the new model provided an indispensable understanding of the structure, cis-trans isomerism, reactivity, and intermolecular interactions of the MDI-BDO hard segments. The proposed model can be further improved in the future by incorporating suitable soft segments. In summary, the model system developed and validated in the present study has provided new opportunities to understand and further study the structural and chemical features of the hard segments of the MDI-BDO-based polyurethane.

4.
J Mol Graph Model ; 101: 107711, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32898834

RESUMO

Currently, only three molecules, flutemetamol, florbetaben and florbetapir, have been approved for clinical use towards the definitive diagnosis of Alzheimer's disease (AD). Despite the clinically approved drugs' advantages, there still exists a need for new diagnostic molecules with improved properties (physicochemical and pharmacokinetic) in comparison to the current molecules in clinical use and research. In this work, we report a pharmacophore model and a quantitative structure activity relationship (QSAR) model, constructed from a series of 166 amyloid beta diagnostic compounds (targeting Alzheimer's disease) with the purpose of identifying functional groups influencing and predicting bioactivity. Subsequently, pharmacophore based virtual screening and QSAR predictions were used to identify new amyloid beta diagnostic molecules. In addition, docking and molecular dynamics simulations were conducted to explore the type and nature of interactions required for ligands to bind effectively in the binding regions of amyloid beta fibrils (PDB 2MXU). In our findings, the highest-ranked 4 feature pharmacophore model possessed one hydrogen bond acceptor, one hydrophobic feature and two ring features (AHRR). Systematically, the same dataset of molecules used for pharmacophore modelling was used to generate an atom-based 3D QSAR hypothesis to illustrate the activity relationship of amyloid-beta diagnostic molecules. The partial least squares (PLS) 3D QSAR model obtained showed good correlation as indicated by respective statistical parameters, R^2, Q^2 and Pearson values of 0.76, 0.72 and 0.86 respectively. Virtual screening against ZINC15 database and the ChemBridge CNS-Set yielded 7 molecules, 4 of which had satisfactory ADME properties. Docking and molecular dynamics simulations showed that hydrogen bonding, hydrophobic and π-π interactions are crucial towards the binding of ligands (as predicted by our pharmacophore and QSAR models) to amyloid beta fibrils. In conclusion, the findings of this work present a wealth of information that can be useful in future research towards identifying and design of new amyloid diagnostic molecules. The pharmacophore presented here can be used to filter independent databases to identify new structurally related molecules with improved activity whereas the QSAR model can be useful in predicting bioactivities of the predicted hits.


Assuntos
Peptídeos beta-Amiloides , Relação Quantitativa Estrutura-Atividade , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
5.
Biophys Chem ; 256: 106281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756663

RESUMO

Timely and accurate diagnosis of Alzheimer's disease (AD) remains a major challenge in the medical arena. ß-amyloid (Aß) imaging techniques such as positron emission tomography and single photon emission computed tomography require the use of an imaging probe. To date, only flutemetamol, florbetaben and florbetapir have been approved for clinical use as imaging probes. Design of imaging probes requires a detailed understanding of disease mechanism(s) and receptor-ligand interaction. In this study, molecular docking, molecular dynamics and binding free energies were used to investigate the multiple binding sites exhibited by ß-amyloid fibrils. Protein atomic models 2BEG, 5KK3, 2M4J, 2LMN, 5OQV, 2NAO, 2MVX and 2MXU (protein databank codes) were used to investigate the nature and location of binding sites and binding profiles of selected molecules with known affinities. Although amyloid fibrils are known to have multiple binding sites, we demonstrated that model 2MXU possesses one site which is druggable and can bind with common scaffolds currently being used in the imaging of amyloid fibrils. Models 2NAO, 5KK3 and 2M4J revealed that even though multiple sites may be available in some fibrils, the entire protein may not have a druggable site. Molecular dynamics revealed atomic models 2MXU and 2MVX to be the least flexible among the list. The outcomes of this investigation can be translated to assist in designing novel molecules that can be used for brain imaging in Alzheimer's disease.


Assuntos
Amiloide/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína
6.
J Mol Graph Model ; 86: 179-191, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388692

RESUMO

Two-dimensional TiSe2, with Yb14MnSb11 and AlSb9Yb11 thermoelectric materials, were used to generate heterostructures. The electronic and optical calculations were done using the Materials Studio 2018 modelling software package, employing the Cambridge Serial Total Energy Package code and using the generalised gradient approximation with Perdew-Burke-Ernzerhof exchange-correlation functionals. However, the electronic results obtained revealed a reduction in the calculated band gap and an increase in the slope of the density of state at the Femi level, as well as the energy bands of the generated heterostructures was reported. Partial density of states showed that various orbitals were present in the thermoelectric materials. The thermal transport and electronic properties are compared using the Boltzmann transport theory and Mott derived equations, which were expressed in the maximum attainable figure of merit. A variation in the electric potential of the layers is observed. The dielectric function is found to decrease in both thermoelectric layers generated and far more than the Yb14MnSb11-TiSe2 layer, which was more negative. The reduction in reflectivity of AlSb9Yb11TiSe2 layer and elevation of the Yb14MnSb11-TiSe2 layer is observed. Upon forming heterostructures with TiSe2, the conductivity reduced in the high frequency, due to the generated complex multicomponent compounds.


Assuntos
Condutividade Elétrica , Modelos Teóricos , Estrutura Molecular , Compostos Organometálicos/química , Condutividade Térmica , Algoritmos , Elétrons , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...